Weak subordination of multivariate Lévy processes and variance generalised gamma convolutions
نویسندگان
چکیده
منابع مشابه
Variance swaps on time-changed Lévy processes
We prove that a multiple of a log contract prices a variance swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the driving Lévy process, subject to integrability conditions. We solve for the multiplier, which depends only on the Lévy process, not on the clock. In the case of an arbitrary continuous und...
متن کاملIntegral Representations for Convolutions of Non–central Multivariate Gamma Distributions
Three types of integral representations for the cumulative distribution functions of convolutions of Γp(αk,Σk,∆k)–distributions with non–centrality matrices ∆k are given by integration of products of simple complex functions over the p–cube (−π, π]. In particular, the joint distribution of the diagonal elements of a generalized quadratic form XAX ′ with n independentNp(μk,Σ)–distributed columns...
متن کاملMultivariate Bernoulli and Euler polynomials via Lévy processes
By a symbolic method, we introduce multivariate Bernoulli and Euler polynomials as powers of polynomials whose coefficients involve multivariate Lévy processes. Many properties of these polynomials are stated straightforwardly thanks to this representation, which could be easily implemented in any symbolic manipulation system. A very simple relation between these two families of multivariate po...
متن کاملOn Kolmogorov equations for anisotropic multivariate Lévy processes
For d-dimensional exponential Lévy models, variational formulations of the Kolmogorov equations arising in asset pricing are derived. Well-posedness of these equations is verified. Particular attention is paid to pure jump, d-variate Lévy processes built from parametric, copula dependence models in their jump structure. The domains of the associated Dirichlet forms are shown to be certain aniso...
متن کاملMultivariate Variance Gamma and Gaussian dependence: a study with copulas
This paper explores the dynamic dependence properties of a Lévy process, the Variance Gamma, which has non Gaussian marginal features and non Gaussian dependence. In a static context, such a non Gaussian dependence should be represented via copulas. Copulas, however, are not able to capture the dynamics of dependence. By computing the distance between the Gaussian copula and the actual one, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2019
ISSN: 1350-7265
DOI: 10.3150/17-bej1004